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A closed form solution for the displacements and stresses of a slightly
non-circular, ring-stiffened shell is derived rigorously from thin shell theory.
The solution may be implemented on programmable pocket calculators, providing an
accurate but easy to use, method for predicting bending stresses.
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NOTATION

displacement from rest (generic form)

initial imperfection (generic form)

axisymmetric displacement (generic form)

Young's Modulus

Poisson's ratio

shell radius

shell thickness

shell section length

distance from shell mid-surface (positive inwards)

distance from shell mid-surface to frame centroid
(positive for internal frames)

circumferential, axial and shear strains respectively

frame area

axial position; as a subscript denctes differentiation
with respect to x when used in conjunction with u, v, w,

1
W

circumferential co-ordinate; as a subscript denotes

differentiation with respect to 6 when used in con-

. . . i
junction with u, v, w, w

eigen vector amplitudes associated with Ith basis
function in the expansion of axial, circumferential and
radial bifurcation displacements, respectively

axial, circumferential and radial bifurcation displace-
ments, respectively. (x, and 6 often omitted).

w positive inwards

the radial out-of-circularity at x and 6. (x and 6
often omitted)

derivatives of w® with respect to x and 6, respectively

axial pre-buckling displacement
radial pre-buckling displacement

pre-buckling rotation

-4 -

UNLIMITED




UNLIMITED

N upper limit to the number of basis functions required in
the expansion of bifurcation displacements

ptts LI

-t se e Bt B el o . -

n number of circumferential waves
e maximum departure from mean circle
i
) X displacement vector
p lateral pressure (positive extermal)
P axial pressure (positive external)
1 wave number of imperfection shape, e sin I wx/L
oc oc oc
Nf number of frames
Ns number of frame spaces

frame spacing

b width of faying flange, or web thickness

Rg centroidal radius of frame

Am2 second moment of area of frame, for in-plane bending
A frame area

; in the Kendrick Frame
) expressions (Appendix)

I second moment of area
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CLOSED FORM SOLUTION FOR THE BENDING STRESSES IN
RING-STIFFENED SHELLS WITH SHAPE IMPERFECTIONS

INTRODUCTION

An important consideration in the design of externally pressurised
cylindrical shells is the allowance for the shape imperfections which inevitably
occur during manufacture. Components of out-of-circularity which approximate to
. critical buckling mode shapes are considerably exaggerated as the applied
pressure approaches the corresponding buckling pressure. Frame stresses may
exceed the material yield strength, precipitating failure by one of several
mechanisms.

2. Many methods are available for finding the buckling pressures of the perfect
ring-stiffened shell, and while frame stresses may be found with simplifying
assumptions concerning the way mode shapes will develop (1, 2, 3)%*, comparatively
few analyses exist which allow a completely satisfactory direct solution to the
bending stresses.

3. The purpose of the analysis presented in this paper is to provide a closed
form solution for the displacements and frame bending stresses in a nearly
circular, uniformly framed, ring-stiffened cylindrical shell. The method is
based rigorously on thin-shell theory, but is nevertheless simple enough to
allow calculations to be made on a programmable pocket calculator.

THEORY

4,  Kendrick has shown that the strains in a slightly non-circular shell may be
written as follows (1):

(vg = WI/R + (wa2 +ul - 2wve)/2R2 + gy - wiw) /R?

€9 0 8
_ 2 2 i
e, T u, + (l/2)(wx v, )+ W W
Y, = U/R v (1]

The strains contain quadratic products of the displacements, u, v, w and the

imperfections w". From equations such as [x], a set of linear equations may be
derived, the solution of which yields the displacements and stresses in the
shell. An outline of the derivation is given below in general terms, applying
to any set of strain expressions. A specific derivation, using the original
Kendrick expressions (1) is given in the Appendix,

{
!
4
-
!

5. An expression for the strain of shell and frames is written in terms of the

displacements from rest (d*) and the initial imperfection (d'). Parameters d"

and d* represent in generic form terms of the following type:

] %( ) = References on page 16

-6 -

UNLIMITED




S,
4T,

e i W ol o .

h‘~. -

Peds YL YON
T p N i3
Lo .
i m—— AN

e et s

UNLIMITED

r r r . \ . . . s
d”: w,v,u and their derivatives with respect to axial position x
and circumferential position 6

where w, v and u are respectively radial, circumferential and axial displace-
ments.

2 .
The strain expression contains terms proportional to dr, (dr) and drdl, the
exact form of the expression depending to some extent on the basic formulation
used: the Novazhilov formulation uses a Cartesian co-ordinate system; the
method used by Kendrick uses cylindrical co-ordinates.

6. The total potential energy is given by the following expression

UT = US + Uf - W

where the contributions from shell (Us), frames (Uf) and external load (W) may
be expressed as

r2‘ﬂ' L
U, = ug (x, 8) dxde . [2]
‘o o
(2m
Vg = I u_(x, 6)de . [3]
Jo frames
2m (L
W= w (x, 8) dxde . (]
o ‘o

The shell and frame energy densities (uS and ug respectively) contain the follow-

ing types of terms up to cubic order in ar;
r 2 r 3 r 2 i r 3 i
d”) (d™) (d)d (d") 4 .
The load potential term has terms in:

2 ,
aF a") and dF at

7. Total displacements (dr) are expressed as the sum of primary displacements

(d) and bifurcation or buckling displacements (d):

" =d+a . [5]

The following terms, of less than cubic order in d or &, are then present in UT:

-7 -
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8. The primary displacements (d) at any desired pressure p are evaluated

first, including if necessary the effects due to an axisymmetric imperfection.

It is assumed that non axisymmetric imperfections are sufficiently small so that
d may be considered to be axisymmetric. The bifurcation displacements d are
found by minimising UT‘ Bifurcation displacements are assumed to be sufficiently

small to enable coupling between different lobar modes to be ignored. The
bifurcation mode shape is considered therefore to be a pure Fourier mode. With
i the simplifying assumptions concerning pre-buckling and buckling displacements,
y only five sets of terms need be considered:

From the strain energy densities:

Loati b Lol

1. 4 @R

- 2
2. dd (Em/R)
! -1 2
3 . 3. dd"d (Eh/R")
ﬁ . ol @nr)

and from the external work:

5. pd2

where p is the applied pressure.

The typical order of magnitude of coefficients corresponding to each type is
indicated in brackets. Terms 1 and 4 are independent of external load (p).
Terms 2, 3 and 5 are directly dependent on p. The coefficients of type 4 terms
are such that the contributions of the terms are smaller than the contributions

from type 1 terms, by the ratio d*/R. The effect of type 4 terms is to couple
different lobar modes for large displacements. Provided the level of out-of-
circularity is small in relation to the radius, and the gradient of the
imperfection surface not too rapidly varying in the x-direction, type 4 terms
may be ignored, maintaining compatibility with the assumption that the develop-
ment of different lobar modes occurs independently.

3 9. Bifurcation displacements are represented in terms of Fourier functions.

{ -8 ~
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u. cos Imx/L

sin n® I A sin Iwx/L
I=1

Ny

w (x, 6) cos nb I wI sin Inx/L
I=1

On minimisation of UT with respect to the amplitudes Ups Vs Wis for I =1 toN

and scaling to a non-dimensional form, the following matrix problem arises

I

Mx = ¢ [7]

where M = A + B
‘. 2 ‘
« " = pR(1-v") /Eh (8]

Matrix A contains coefficients of type 1 terms (d2). Matrix B comprises
coefficients of terms from types 2 and 5. The vector ¢ derives from group 3
terms, and x is the displacement vector whose terms are the amplitudes of the
Fourier functions at any pressure p:

X = (U, V. W, eeeuen e U_ Vo W_ sennaess qu w. ) fg]

hall b i

10. For the perfectly axisymmetric structure (c = 0) the matrix problem of
equation [?] reverts to the standard buckling eigen value problem. Matrices A
and B are identical to the buckling matrices.

1l. Prebuckling distributions required for the B matrix and ¢ vector have, in
this paper, been calculated as follows. The axisymmetric radial deformation of
a frame in a uniformly framed, ring-stiffened cylinder, under unit hydrostatic
load is given precisely by the following expression (4, 5)

v-wf = R% (1 - v/2) / { En [ +A/ (bh + 28h/a) ] } [10] |
where
¥ A= A (R/Rg)2
: A N L
; N = (cosh aL' - cos aL') / (sinh al' + sin al')
;’ ' L'= L. -b
H -9 -
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e To conserve radial load, the net circumferential stress in the shell must
satisfy the following equation:

- sh _ - _ -
o Lyd = RL_ - EAW, / Ry [11]
.

The longitudinal pre-stress EXSh is given by

7 sh . _p/on [17]

h

. N . . (T S . . (= shy .
The axisymmetric circumferential strain (e h) and the axial strain (ux ) in

the shell are:

EeSh = £t E:h - vR/2l€| [19]

6

-sh _ _-1 - sh
B e 5 e ) 4]
for the chosen sign convention, pressure positive external, displacements

positive inwards.

12. The matrix M may now be defined very simply (details in Appendix). Shell
and frame components are considered separately,

M = Ms + Mf .

For a ring-stiffened cylinder of uniform shell thickness the shell matrices are
banded tri-diagonally,

_ uu 2 uu
M, (Iu , 1U) = my o+ I'm,
_ uv
M (Iu , IV) = Im,
_ uw 3 uw
M (IU , IW) = Iml + I'm,
i [15]
4 MoV, Iv) = m " o4 1%
i s o 2
3
. | MO(IV, IH) = m ™ 4+ p ™
. - s o 2
'i - ww 2 ww 4 ww |
! M, (Iw , IW) m + I'm, t Im,
‘ where
IU = 3I -2
IV = 3I -1 I = 1,2, covennnnn No (16]
; IWw = 31
{
: - 10 - :
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to be compatible with the displacement vector definition, equation [94].
Expressions for mouu etc specific to the Kendrick formu'-tlun are given in the
Appendix.

13. Satisfactory solution of overall buckling problems may be cbtained if out-
of-plane bending stiffress of frames is ignored in both A and B matrices (3).

The frame terms of the M matrix then contain neither x-derivatives nor terms irn
axial displacement u.

Mo {1V, JV) = £ s(1,J)
Mg (IV, JW) = £ S(I,d) [17]
Mo (IW , JW) = £ s(1,9)
where
Ne
s(I,dJ) = (2/N) £ sin (Imx,/L) sin (Jmx,/L) [18]
S i=l 1 1

14. The ¢ vector may be similarly decomposed into shell and frame terms

c = c  + c
- —-s —f

If the imperfection is of the form e o cos nd sin (Iocnx/L) the shell components

of the ¢ vector may be written as follows (equations [13] and [?j] of the
Appendix):

_ u
cg (IU) = 1 chII
ocC
_ v
cg (IV) = c é6;; (19
ocC
(IW) = ;w + VI s
s T % T %2 11

QcC

The frame terms are given by

_ v
ce (1Ivy = ce c(I)
(20]
. W
cs (IW) = s c(I)
where
Nf
c(l) = (2/Ns) ifl sin (Inxi/L) sin (Iocwxi/L) [?1]
- ll -

i ‘ UNLIMITED



‘I’|l

15. For a uniformly framed structure (identical, uniformly spacer
sinusoidal components obeying the following relationship for some integral value
of K are coupled (3):

I I "
I = (%){1-(-1)][(I'—l)Ns#lg,i[l+(-l)1E'NS—J}

for I' = 1,2, 3, cecnreriiiaenn Ny [22]
Functions satisfying equation [22] with either " " or "-" in the centre provide
a complete orthogonal set. Selecting the "-" option, it may be shown straight-

forwardly that
S(I,J) = 1 [23]

for all I,J satisfying equation [:22:[ Only the long wavelength shapes will be
required,

€ c sin (Kwx/L) for K = 1, 2, 3, «cec.. e s
representing the fundamental modal components of equation [:22:] . If I = K,
K € Nf, then oc
o(I) = 1 (24]

for all I satisfying equation [22:] It follows immediately that the fundamental
matrix, equation [7], may be stated in the following form:

\4 VW
MS(IU,IV)uI + MS(IV,IV)VI + MS(IV,IW)WI + £ v, + £ Lw

I I
= cvé + cv
o’1r__ * ¢ (23]
VW W
MS(IU,IW)uI + MS(IV,IW)vI + MS(IW,Iw)wI + f sz + £ zwI
W w _2 \
= +
(cg *+ ey I9)6 cr [26]
oC
_ u
M (IU,I0)u + M_(IU,IV)v, + M (IU,IW)w, = I cldlloc [27]

the summations being performed for a set of I given by |:22]

1l6. From equation [27] , U. can be written explicitly in terms of v_ and w

I I I’

allowing the matrix dimension to be reduced by a factor of 2/3:

v v W
c(I)—vaI-—f ZwI

s"(vy + 8™(Dw,

[28]

(1) - £ v, - 5w

sv”’(1>vI + S"(D)w

I I

- 12 -
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where

sV(1)
sYY(1)

s¥(1)

cV(1)

(1)

17. Equations [28] show that v

UNLIMITED

M_(IV,IV) - M_(1U,IV)? / M_(IU,IU)
s s s
M _(IV,IW) - M_(IU,1V) M_(IU,IW) / M_(1U,IV) [29]

MS(IW,IW) - MS(IU,IW)2 / MS(IU,IU)

(30]

v u N
[% - 1 c; M_(IU,IV) / MS(IU,IUi}

(3]

[E” + 1% 1 MM (TULIN) /M (IU,IUE]
1l s s

I and wI, for any I, can be expressed in terms

of summations over v_ and w_:

I I

W) = s |V - i] - s (M - é] i
152]
Ww(I) = s(I) |M(D) - g] - s [V - rﬂ
where
n o= £ 57 4 Y
[33]
£ o= LA Zw
£’ and ¥ denoting ZvI and ZwI respectively,
sY(ry = s¥(1) / D(I)
sy = sY(1) / D(I)
(4]
sY(1) = s¥a) / p(1)
NI) = sY(D) s¥(1) - s™(D)?

- 13 -




18. Substituting equations [32] into equations |28], it may be seen that

- | v o - W - v ol oeww - w
¥ I -{Efsvf—swf]Cl I:Swf -swf]cz}/
e

{[1+§wf"—§wf‘"j[:1+§vf"-wa""J - [35]

[; £ - s fV]F, £ -5 f"_'}
v W W W

w o _ = V= vw, _V = W - w
I = El (1 + s, £ S £7) Z] / (sw f Sy £7) Dé]
where

- v - - vw - . w

s, ¥ Is(D s IsT(I) s rs (1) [37]
_ = Vv _ = W w v o_o_vw w

Cl = sw Ce ~ S, Cf + 5 (1) csh s (1) Seh

[34]

_ = W _ = v v w VW v

C2 = s, Cp s g + s (1) Ch ~ S (1) Seh

19. Equations [32] to [:38] represent the closed form solution for the circum-
ferential (v) and radial (w) displacements of a hydrostatically loaded, slightly
non-circular, uniformly framed, ring-stiffened cylinder, with shape imperfection
e . sin (Kmx/L) cos (n8). Equations [35] to [38] may be evaluated directly in

terms of known shell and frame coefficients (equations E?i] and |:25:| of
Appendix).

20. Equations [:32] give v(I) and w(I) from which the shell displacements at
any position x using equations [6:] and [22:' . In this derivation the central
sign of equation [__22:] has been taken to be minus. If the 'plus' option is used
the final expressions take on the slightly modified, but numerically equivalent,
form given in (3).

21. The stresses, at position z on a frame section, are given by the following

expression
"'f"; o(z) = oax(z) t o0, (2) [39]
,1 where the axisymmetric stress cax(z) is given by
4
i aax(z) = Ewg / (R - Siz) , [40]

and the bending stress ob(z) is given by

o (z) = (E/R) @ v(x) - w(x) + (2/R) (a° - 1) w(x]] (41]

- 14 -
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NUMERICAL EXAMPLES

22. Displacements and stresses have been evaluated on the two rather different
structures given in Table 1.

23. Displacements and stresses in the closely frame-spaced submersible
structure are given in Tables 2-4. The predictions of closed form and matrix
nethod are almost identical. The closed form method is particularly useful for
convergence tests (Table 4).

24, In the widely frame-spaced VAC type structure severe mixed-mode effect
occurs for n > 2. The closed form method provides therefore a very simple
method of allowing for mixed mode effect in ring-stiffened cylinders. Displace-
ments and stresses predicted by closed form and matrix methods agree almost
exactly (Figure 1, Table 5).

CONCLUSIONS

25. By means of analytical simplification, it is possible to derive rigorously
from thin-shell-theory, a closed form expression for the bending stresses in a
uniformly framed ring-stiffened cylinder with non-axisymmetric shape imperfec-
tion.

2€. The analytic method has been implemented on a programmable pocket calcu-
lator and results are shown to agree with the predictions of more usual matrix
methods which require quite large computers for accurate solution.

27, It is felt that the 'closed form' method provides a useful means of check-
ing the prediction of:

a. more sophisticated methods, such as finite difference and finite
element, and

b. approximate methods used in design codes, such as the effective
breadth approach of BS5500.

The method is particularly appropriate for carrying cut convergence studies to
assess the fine-ness of mesh required in more sophisticated analyses.

- 15 -
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TABLE 1

CASE 1 - PV4 SUBMERSIBLE
19 equispaced frames
R = 2000 mm d = 180.92 mm
hos 17.879 mm Py ® 9.0 mm
f = 90,46 mm
L = 12000 mm hf = 15.07 mm
E = 207000 N/mm*“ INTERNAL
v = (0.3
CASE 2 - PVy vaC TYPE
1l central frame
R = 2500 mm d = 192 mnm
h = 20 mm hw ) 1o mm
t = C
L = 14000 mm hf - 0
E = 207000 N/mm2 INTERNAL
v = 0.3
R shell radius d web depth
h shell thickness hw webk thickness
L shell length f flange width
E  Young's modulus hf flange thickness

<

Poisson's ratio

- 17 -
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TABLE &
»i
M N v W obfl ng%
1 6 3.854 8.060 220 417.0
2 12 4,080 8,653 224 421.5 ¢
3 *T, 4.106 8.723 225 422.0
5 30 4,116 8.749 225 423.0

PV4 Submersible n = 2, shape 20 cos 26 sin wx/L.

! Convergence test: M convergence parameter,

N equivalent (IFAC = Q) matrix size.

Pressure 3 N/mmz.

At A b s
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FRAME DISPLACEMENTS - PV4 VAC TYPE STRUCTURE

UNLIMITED

TABLE 5

pressure = 0.3 N/mm2

e = 25 mm =1
oc oc
n =2 n=3 n =4 n=5 n==56
Circumferential Displacements (v)
Closed Form 1.3725 5.02606 2.4920 1.1397 0.44280
Matrix 1.3724 5.0282 2.5007 1.1502 0.44616
Radial Displacements (w)
Closed Form 2.7460 15.470 10.412 6.0950 2.98730
Matrix 2.7449 15.475 10. 444 6.1u474 2.9940
-
- 21 -
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APPENDIX

. In equations DJ ee, ex, Yx

and shear strains. The displacements w, v, etc are measured from rest, the
superscript "r" being omitted for convenience. The extensional shell energy
is then given by the standard plane-stress, thin shell expression:

g are respectively the circumferential, axial

2n

} 2 2 2
Ue = E.‘.Rh/2 (1 v )} {ee + e, + 2veeex +
o ‘o

(a1]

(1/2)Q1 - v)yx92} dedx

2. The following expression for the shell bending strain energy was used by
Kendrick (6):

2w
2 2 2 2,2
Ub = ‘ [ERbk/z (L-v )] {R L + (wee + w) /RT +
o ‘o
: ) )
. (1/2)C1 = v)w o = ug/a)® + (3/2)A = v, +w D%+ [aZ]
. 2\)wxx (w66 + ve) + 2Ruxwxx} dxde

, where k = h2/l2R2. The shell energy contribution US = Ue + Ub' Frame exten-
¥

\ sional strains are expressed in terms of the mid-shell strain eq and the change

of curvature due to in-plane bending, giving the following expression for the
extensional frame energy Fe,

Nf 2w
L F, = I (EAR/2) [ feg = (g + W) (e/R9)}? de [a3)
k. r=1
. o
3. Frame bending energy is given by:
N 27
£ 3 2
F, = L (EI/2R7) (wgo + W)* a0 (a]
r=l o

i 4, The total frame energy Uf = Fe + Fb. The work done by external load on an

. initially imperfect cylinder is found to be given by the following expression:
i

- 22 -

UNLIMITED

Nl -




UNLIMITED

L

{ZRw - 2wty - w2 + 2R (wl + w)(ux + Vs/a) -

o
2n (L
Ru v } dedx + (PR2/2) - u_ dxde
x © X

5. In all the expressions given above the superscript "r" denoting displace-
ments from rest has been omitted. On making the transformation:

ur(x,e) = u(x) + u(x,8)

vr(x,e) = v(x,6) BE’]
r -

Wo(%,8) = w(x) + w(x,6)

the total potential energy UT is found to be given by the following expression:

UT = UA + UB + Uc [@j]
where
2% (L 3
L - 2 . _
U, = [ghR/2 (1 -wv 3} {ux + (ve w) /R” ¢ 2vu (v8 w)/R +
o ‘o
) 2 2 2 2,2
(1/2)(1 - v)(ue/R + vx) + k {% Yo Tt (we6 + w) /R® +
(1/2)(1 = V). = u /R 4 (3/2)(1 = v)(v. +w )%+
VI¥ye T Yo x T Yxe
[Ag]
. 2vw (gt Vo) # 2Ruxwx§J} dedx + I (EAR/2)
1 r=l
|
7 3 2n

2
.} {[Ewee + w)(e/Rz) + (w - ve)/g] +

o]

4 2
(I/R°A)(Wg o + w)°) do .

- 23 - i
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2n (L
2 2 - 2 2 2
9) = - - - - -
B ]Eh/ZR (1 -wv )] {w l 2v, ug We t 4wy

o [¢]

2 2 -
R'v (w 2 + v ) - 2Rvu Y:] +u [Ea(v 2 +w 2) +
X X X 6 X X X

2 2
Rv (ue + LA 2wveE] +

- 3 2
L [ER u W, - 2vRw (W - VGE}} dedx + [ag]
N n
£ 2,- 2 2 2
 (EA/2R")w | {-(1 + e/RJug” - 2v,© - (L + e/R)w” +
r=l
o
27 L
4
(1+ e/R)wve + (2e/R)weeve} de + (p/2)
o ‘o
{w2 - 2w (v. + Ru) + Ruv } dedx
6 X x 6
2n (L
_ 2. 2 -1 i i i_ i_
UC = [gb/ZR (1 -wv E] {w [:2vRuxw 2vew + Lww 2wewe
o ‘o

2R2vw w 'l +u {-2Rvww® + 2Rvw.w. T + 2R3w w il o+ ]
X X X 06 X X

W [Esz(v - ww o+ 2R3 w f]} d6dx +
X 5] X X X
(a10]
£ 27

N
I (EAZRD | {-2v e+ 4L+ e/RIw’ -
r=l

2(1 + e/R)wgw 1+ (2e/R) weewl} e +

¢l

2n oL

i
-v_ - d .
p W (W Vo Rux) dedx

(o] o

Terms proportional to the end loads (P) do not appear explicitly in the final
expressions. Effects due to end loads are transferred through w, ﬁx and Gx.

; -2 -
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6.

c-vector may be written as follows:

UNLIMITED

On minimization of the energy expressions, the A and B matrices and the

A (IU,IU)
S

A (IU,IV)
S

A (IU,IW)
S

A (IV,IV)
S

A (IV,IW)
S

A _(IW,IW)
s

B (IU,IV)
s

B (IU,IV)
S

B (IU,IW)
S

B (IV,IV)
S

B (IV,IW)
S

B (IW,IW)
S

c (IV)
s

c (IV)
s

c_(IW)
s

2

u

"

"

|
o]
o4
7]

= Ix

1]

"

~ —
-nll - 2b e

—

-nIA(l + v)/2

n2(1 + K - v)/2 + 1A

-nIr/2 +n bvaAE

b s (10)? - 2n2 b e
s X s 6

2

vIA —nz(l - v)kIAazz + k(lx)a

n” + (1 - v)(1+ 3k)(IA)2/2
-n[; + (3 - vk (Ik)Q/é]

(L + k) + n’k [52 -2+ 2(1A)€] £ k("

sh
]

sh

- sh
weocn [E + bsee :} GII
oc

2.~ sh 2 - s
ve . {2 + b {2 - n ye S+ vin® - Lu,
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a3
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ALIV,UV) = n’f s(1,0)
; N A(IV,JW) = A (IW,JV) = -nf[g - @? - l)e;] S(1,J) [A14]
‘ Af(IW,Jw) = {f[gl + ep)2 - 2n2er + n2(n2 - 2)ei] + g(n2 - 1)2} S(1,J)
Bf(IV,JV) = 2n2bf S(I,3)
B(IV,JW) = B_(IN,JV) = —nbf[%(l te) - n2e;] s(I1,J) [A15]
B(IW,0W) = n’b_ (1 +e ) S(I,0)

vf(IV) = -Wncf Cc(I)
[A1€]
CIW) = -ye. |2(0° - e + (2 - 2)| c(D)
£ R A r n
where:-
IU = 3I-2 JU = 3J-2
Iv = 3I-1 v = 3J-1 [£17]
IW = 3I JW = 3J
L2 2 _ 2 2
k = h“/12R A = wR/L bs = Eh/R(1 - v7) f = Ast(l - v7')/hL
(a18]
g=A N (1-v)/mR?® e =e/R b, = -EAWN/RL c. = -e b
m2 s r £ £ st f oc f
v 3 N
- S(1,J) = (2/Ns) I sin (Inxi/L) sin (wai/L) [a19]
;- izl
“4 l
5 Nf
E (1) = (2/N) ifl sin (Imx,/L) sin (I_ mx /L) [a20]
[
- 26 -
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7. calculations are simplified if matrix M is cast in the form of equation [}5]

. u .
with mou etc defined as follows:

uu 2 2. =
m, = n (1 + x)(1 - v)/2 ~ yn b S,
m;u - A2
uv  _ - sh ’]
mF na(l + v)/2 + WEsv)\nee - nk/i]
uw 2
LI VA - n (1 - v)kA/2 + A
uw 3
m3 = ki
v 2 2. -~ sh
m0 = n - ¢2n bse6
(a21]
vv oo _ 2 ~ 2
m, = (1 - v)(L + 3k)A"/2 + wsxk bs
mvw = ~n-yn [} - 2b e sh + b vu ss]
o s 6 s X
n = -n(3 - w2
A oz (1+ k)t knz(n2 - 2) + w[& - n2b Ei]
o} s ©
2 = 2n%KA? + ¥ %5
2 s X
wWW o _ 3
m, = kA
where:-
- _ =sh.. _ 2
se = oe (1 - v)/E
(A22]
s = 3500 - vhE
X X

8. With reference to equations [?Q] and [?i], the c-vector coefficients approp-
riate to the Kendrick expressions are as follows:

- 27 -
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u o - sh
¢, = weocA[E + bsvee :]
v - sh
¢y ° Weoan + bsee ]
[a23]
w o _ .2,- sh 2 _ .y= sh
. e, = weoc[é + bs{(2 n )e6 + vin Lu, i]
w oo - .2
€ weocsxA s
v el
cg = yne,
[A24]
W 2 2
cg © wcfE(n l)er + (n 2)]
9. Frame coefficients fv, £ and £" are given by:
£ = nQE + rpzb]
£
’ woo_ 2 .2 [a25]
f = nE{l (n l)er} + wa{2(l + er) n er}:]
w oo 2 2 2,2 .2 2 2 2
£ = fEl + er) 2n e, *tn (n 2)e;l +g(n” - 1) + wan (1 + er)

e . o
USRI N ROy
.

; i - 28 -
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